Stability Analysis of Discrete-time Lure Systems with Slope-restricted Odd Monotonic Nonlinearities
نویسندگان
چکیده
Abstract— Many nonlinear dynamical systems can be written as Lur’e systems, which are described by a linear time-invariant system interconnected with a diagonal static sector-bounded nonlinearity. Sufficient conditions are derived for the global asymptotic stability analysis of discrete-time Lur’e systems in which the nonlinearities have restricted slope and/or are odd, which is the usual case in real applications. A Lur’ePostnikov-type Lyapunov function is proposed that is used to derive sufficient analysis conditions in terms of linear matrix inequalities (LMIs). The derived stability critera are provably less conservative than criteria published in the literature, with numerical examples indicating that conservatism can be reduced by orders of magnitude.
منابع مشابه
Determination of Gain and Phase Margins in Lur’e Nonlinear Systems using Extended Circle Criterion
Nonlinearity is one of the main behaviors of systems in the real world. Therefore, it seems necessary to introduce a method to determine the stability margin of these systems. Although the gain and phase margins are established criteria for the analysis of linear systems, finding a specific way to determine the true value of these margins in nonlinear systems in general is an ongoing research i...
متن کاملImproved delay-dependent stability criteria for uncertain Lur'e systems with sector and slope restricted nonlinearities and time-varying delays
This paper deals with the absolute stability analysis for uncertain time delay Lur’e systems that have time-varying delays and sector and slope restricted nonlinearities. New delaydependent stability criteria are derived via linear matrix inequality (LMI) formulation that can be easily solved by various optimization techniques. Sector bounds and slope bounds are employed to the Lyapunov–Krasovs...
متن کاملA Chaotic Attractor from Chua’s Circuit
A novel frequency domain criterion is presented for theabsolute stability of Lure type single-input single-output discrete-timesystems with slope-restricted nonlinearity.
متن کاملStability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities
The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
متن کاملRobust Analysis of Discrete–time Lur’e Systems with Slope Restrictions Using Convex Optimization
This paper considers robust stability and robust performance analysis for discrete-time linear systems subject to nonlinear uncertainty. The uncertainty set is described by memoryless, time-invariant, sector bounded, and slope restricted nonlinearities. We first give an overview of the absolute stability criterion based on the Lur’e-Postkinov Lyapunov function, along with a frequency domain con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.01302 شماره
صفحات -
تاریخ انتشار 2015